
FaceIt Demo Source Code Notes
The following compiler-independent notes correspond to the "C#" comments in the 
"fDemoXY" source code.    Read these notes while examining a printed copy of the source.

C1. "fDemoXY" provides example code that corresponds to the topics discussed in the FaceIt
Guide which is found in the "ViewIt Help" window opened from the File icon menu when in 
ViewIt's edit mode.    Also see the "Startup" topics in the ViewIt Help window for a description
of basic resource set up and initialization tasks performed at the start of the program.

C2. The FaceStorXY file defines FaceIt, ViewIt, and UtilIt command constants and the fRec 
shared record used by all FaceWare modules.    The FaceProcXY file defines the "FaceIt" 
dispatching procedure and other supporting procedures.    All communication with FaceWare 
modules is made through this FaceIt dispatching procedure using the command and variable
names defined in "Stor" files such as FaceStorXY.

C3. A good way to deal with program-specific resources during development is to keep them 
in a separate res file (a "temporary resource file").    FaceWare facilitates use of such a file by
allowing you to pass the name of this file in the fRec variable uName when calling DoInit.    In
this program the name being passed is "fDemo.Rsrc" which the FaceIt dispatching procedure
will attempt to open if it cannot find the necessary resources within the program file.    Note 
that no harm is done by leaving this assignment in your program source after combining the 
temporary resource file with the program file.

C4. Before making use of any FaceWare module, DoInit must be called.    DoInit is described 
in "Initializations" in the startup topics, and in the "Commands" topic in the FaceIt Guide.    In
this program we are asking that the cursor be changed to a deck of cards whenever control 
is returned to the main program (add 1 to a), that control be returned to the program 
whenever the active window is changed (2), and that control be returned if the user 
attempts to open or print files "from the Finder" (512).    This explains why a = 515 = 1 + 2 +
512 is passed.

C5. The "Editor" and "Clipboard" modeless windows that magically appear are automatically 
loaded by FaceIt when DoInit is called based on instructions found in the STR# 1000 
("FaceInit") resource:
 1200,20,1010
 1200,20,1020
where the first opens a modeless ViewIt 2.0 window (baseID 1200, versID 20) using FWND 
1010 which contains a TextCt text editing control, and the second opens a modeless ViewIt 
window using FWND 1020 which contains a ScrapCt clipboard display control.    See 
"Initializations" in the FaceIt Guide for further info.

C6. This "Beeps & Notes" modeless window is opened by calling NewWnd with a = 1030 = 
FWND ID, and b = 1 indicating that the window is to be modeless (vs. modal).    See 
"Windows" in the ViewIt Guide for further info.

C7. The main program event loop is an infinite loop that responds to program-specific events
not handled by other modules.    The first statement simply passes control to FaceIt by 
calling DoLoop.    FaceIt then keeps control until an event occurs that belongs to the main 
program.    See "The Main Loop" in the FaceIt Guide for further info.

C8. As described in "The Main Loop" topic, the main program receives two types of events:    
pseudo-menu or menu events.    In this program a case (or if...then...else) block based on 
uMenuID and uMenuItem is used to process events.



C9. The first item in the Apple menu (uMenuItem = 1, uMenuID = 101) causes the program 
to open a simple alert via UtilIt's ShoStr command.    ShoStr and other string display 
commands make it easy to quickly display such messages in any Font, Size, Style, and Color.

C10. uMenuIDs 105, 106, and 107 correspond to the three menus in this program that 
contain "Beep Once", "Beep Twice", and "Beep Thrice" as their first items:
    105 = main menu bar menu entitled "fDemo"
    106 = hier. menu attached to "Hierarchical" item
    107 = hier. picture palette menu attached to "Hier. Palette" item and also popped up from 
item in window

C11. Selection of one of the "Beep" items in these menus causes the program to respond by 
beeping once, twice, or thrice (= the value of uMenuItem).

C12. Item #8 (uMenuItem = 8) from the "fDemo" menu (uMenuID = 105) is used to illustrate
topics discussed in "Background Processing" in the FaceIt Guide:    support for background 
processing and switching, and the monitoring of events without calling Get/WaitNextEvent.

C13. The UtilIt command ShoAlt is used to open ALRT 1010 centered horizontally and 
vertically on the main screen (b = 0, c = 1, d = 1).    (A modal ViewIt window could also be 
used as an alert.)

C14. If "Cancel" was not chosen (uResult = mode > 1), then the program enters an endless 
loop that beeps once every three seconds.

C15. If demonstrating background processing/switching (mode = 2), then GetNextEvent is 
called each time thru the loop to check for update events (fEvent.what = 6), switching 
events (fEvent.what = 15), and other events of interest (in this case, auto-key events = 
fEvent.what = 5).    If update or switching events are found, they are passed on to FaceIt to 
handle via DoEvnt.    If an auto-key event is found, then the loop is exited.

C16. If demonstrating the monitoring of events without calling Get/WaitNextEvent (mode = 
3), then the toolbox call "GetKeys" is used to check the status of the keyboard.    If, in this 
example, the bits corresponding to the Option and Command keys are both set, then the 
loop is exited.    When using "BitTst" to test bits, the following bit offsets apply:    48 = 
Command, 61 = Option, 62 = Caps Lock, 63 = Shift, and 40 = Period key.

C17. ViewIt returns control with a pseudo-menu event (menuID = 1030 = FWND ID, 
uMenuItem = item # pressed) when a button is pressed in the modeless "Beeps & Notes" 
window.    In this window there are 3 buttons that correspond to beeping once, twice, or 
thrice (wcHit = 1, 2, or 3).    This window also contains an enabled picture control that also 
generates a pseudo-menu event when clicked (returning wcHit = 4).
    Each time the picture is clicked, the program responds by using UtilIt's PopMen to pop up 
the picture palette that was previously auto-installed by FaceIt on DoInit.    It pops up the 
menu directly above the picture in the window by specifying the proper local coordinates 
when calling PopMen.    PopMen returns with uMenuID and uMenuItem reset to values 
corresponding to the user's choice from the pop-up menu.    Note that this pop-up menu is 
the same non-main menu as that displayed via the "Hier. Palette" item in the "fDemo" main 
menu.

C18. The next case is another example of responding to a pseudo-menu event. The event 
being processed is one that we asked to be informed of when calling DoInit:    a change in 



the identity of the active window.    This event returns with uMenuID = 1100 (the baseID of 
FaceIt module), and uMenuItem = 2 (to distinguish it from other pseudo menu events posted
by FaceIt).    Knowing when the active window changes is useful when you have program 
menu items that are "context sensitive".    In this example we simply change the text of the 
last item in the "fDemo" menu to track the type of window that is active.    The active 
window type is easily identified by the baseID of the window-driving module (stored in 
fActiveID), and the ID of the FWND used to open the window (stored in fActiveResID).

C19. The last case is another example of responding to a pseudo-menu event.    The event 
being processed is also one that we asked to be informed of when calling DoInit:    an 
attempt by the user to open or print files "from the Finder".    This event returns with 
uMenuID = 1100 (the baseID of FaceIt), uMenuItem = 512, uResult = 1 (open) or 2 (print), 
uString = file type, uName = file name, and the current directory set to that containing the 
file needing to be opened or printed.    To keep the example simple, this code only opens 
TEXT files from the Finder into a single, existing window with a TextCt text-editing control.    
The command GetCtl is used to get the control's control handle which is then used when 
executing TextCt's OpnCTxt command to open the file.    Also note how the file name 
returned in uName is preserved across the GetCtl command since calls to the FaceIt 
procedure do not preserve "u" variables.    See "Finder Resources" in the FaceIt Guide for 
more info.


